Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Cui-Jin Li,^a Wei Li,^a Ming-Liang Tong^a and Seik Weng Ng^b*

^aSchool of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.004 Å Disorder in solvent or counterion R factor = 0.045 wR factor = 0.112 Data-to-parameter ratio = 14.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2005 International Union of Crystallography

Printed in Great Britain - all rights reserved

Bis(di-2-pyridylmethanediol- $\kappa^3 N, O, N'$)nickel(II) dilactate

Di-2-pyridyl ketone reacts with nickel(II) dilactate in water to form the title compound, $[Ni(C_{11}H_{10}N_2O_2)_2](C_3H_5O_3)_2$, whose Ni atom is N, O, N'-chelated by the ketals in an octahedral environment. The cation interacts with the two anions through extensive hydrogen bonds to furnish a helical chain motif that runs along the *b* axis.

Received 8 December 2004 Accepted 21 December 2004 Online 8 January 2005

Comment

Di-2-pyridyl ketone occasionally undergoes hydrolysis when reacted with metal salts to form the corresponding ketal, $(C_5H_4N)_2C(OH)_2$, which itself functions as either a bidentate or a terdentate chelating ligand that binds to the metal atom. A number of complexes of this ligand have been structurally characterized (Tangoulis *et al.*, 1997; Tong *et al.*, 2000, 2002; Serna *et al.*, 2000), but few have a carboxylate ion as the counter-ion. As the metal carboxylate can be synthesized *in situ* by exchanging a halide with a carboxylate anion, the synthesis of the complex with nickel lactate was attempted.

The crystal structure of the title compound, (I), consists of $[(C_{11}H_{10}N_2O_2)_2Ni]^{2+}$ cations and $[C_3H_5O_3]^-$ anions (Fig. 1). The metal atom is chelated by the two ligands in an all-*trans* octahedral geometry, the ligand chelating in the *N*,*O*,*N*'-tridentate mode. The bond dimensions involving the metal atom are similar to those found in the corresponding sulfate complex (Wang *et al.*, 1986). The structure is consolidated by strong hydrogen bonds (Table 2); the hydrogen bonds connect the cation and anions into a helical chain that runs along the *b* axis.

Experimental

Di-2-pyridyl ketone (0.192 g, 1.0 mmol) dissolved in water (2 ml) was mixed with an acetonitrile/water solution (4:1 ν/ν) of sodium lactate (0.110 g, 1.0 mmol) and nickel(II) chloride hexahydrate (0.120 g,

metal-organic papers

0.5 mmol). Green block-shaped crystals separated from the solution after several days.

Crystal data

 $[\text{Ni}(\text{C}_{11}\text{H}_{10}\text{N}_2\text{O}_2)_2](\text{C}_3\text{H}_5\text{O}_3)_2$ $M_r = 641.27$ Monoclinic, $P2_1/n$ a = 10.8401 (7) Å b = 17.359 (1) Å c = 15.611 (1) Å $\beta = 106.534$ (1)° V = 2816.1 (3) Å³ Z = 4

Data collection

Rigaku Mercury CCD area-detector
diffractometer
ω scans
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC,
2002)
$T_{\min} = 0.764, T_{\max} = 0.823$
16648 measured reflections

Refinement

Refinement on F^2
$R[F^2 > 2\sigma(F^2)] = 0.045$
$wR(F^2) = 0.112$
S = 1.01
6277 reflections
430 parameters
H-atom parameters constrained

T = 293 (2) KBlock, green $0.36 \times 0.32 \times 0.26 \text{ mm}$ 6277 independent reflections 5018 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.029$ $\theta_{\text{max}} = 27.5^{\circ}$ $h = -14 \rightarrow 13$ $k = -19 \rightarrow 22$

 $D_{\rm r} = 1.513 {\rm Mg m^{-3}}$

Cell parameters from 12650

Mo $K\alpha$ radiation

reflections

 $\mu = 0.76 \text{ mm}^{-1}$

 $l = -13 \rightarrow 19$

 $\theta = 1.8-27.5^{\circ}$

$$\begin{split} &w = 1/[\sigma^2(F_o^2) + (0.0567P)^2 \\ &+ 0.828P] \\ &where \ P = (F_o^2 + 2F_c^2)/3 \\ (\Delta/\sigma)_{\max} = 0.001 \\ \Delta\rho_{\max} = 0.40 \ \text{e} \ \text{\AA}^{-3} \\ \Delta\rho_{\min} = -0.23 \ \text{e} \ \text{\AA}^{-3} \end{split}$$

Table 1

Selected geometric parameters (Å, °).

Ni1-O1	2.088 (2)	Ni1-N2	2.046 (2)
Ni1-O3	2.093 (2)	Ni1-N3	2.050 (2)
Ni1-N1	2.093 (2)	Ni1-N4	2.092 (2)
01 - Ni1 - 03	178 26 (6)	O3-Ni1-N4	77 12 (7)
O1-Ni1-N1	77.54 (7)	N1-Ni1-N2	86.69 (7)
O1-Ni1-N2	79.35 (7)	N1-Ni1-N3	92.74 (7)
O1-Ni1-N3	102.01 (7)	N1-Ni1-N4	178.67 (7)
O1-Ni1-N4	103.04 (7)	N2-Ni1-N3	178.39 (8)
O3-Ni1-N1	102.34 (7)	N2-Ni1-N4	94.59 (8)
O3-Ni1-N2	98.92 (7)	N3-Ni1-N4	85.97 (7)
O3-Ni1-N3	79.73 (6)		

Table 2

Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
O1−H1 <i>o</i> ···O6	0.85	1.67	2.494 (3)	164
O2−H2o···O5	0.85	1.77	2.617 (3)	174
O3-H3o···O8 ⁱ	0.85	1.73	2.561 (2)	167
$O4-H4o\cdots O9^{i}$	0.85	1.76	2.605 (3)	174
O7−H7 <i>o</i> ···O8	0.85	2.29	2.999 (3)	141
O10-H100O5	0.85	2.20	2.967 (3)	150

Symmetry codes: (i) $\frac{3}{2} - x$, $y - \frac{1}{2}, \frac{3}{2} - z$.

The two lactate anions show somewhat large displacement parameters and were satisfactorily modeled as disordered ions sharing a common $-CO_2$ unit and a hydroxyl O atom. The C-O distances were restrained to 1.25 (1) Å, the C-O_{hydroxyl} distances to 1.45 (1) Å and the C-C distances to 1.50 (1) Å. The displacement parameters of the atoms of the minor disorder components [occupancies 0.652 (5) for O7 and 0.789 (5) for O10] were set equal to those of the

Figure 1

ORTEPII (Johnson, 1976) plot of (I). Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. The two lactate ions are disordered only in their methyl and methine groups; the minor components are not shown.

corresponding atoms in the major components [occupancies 0.35 for O7' and 0.21 for O10'].

H atoms were placed at calculated positions (aromatic C–H = 0.93 Å, methine C–H = 0.98 Å and methyl C–H = 0.96 Å) and were included in the refinement in the riding-model approximation, with $U_{\rm iso}({\rm H})$ values set at 1.2 or 1.5 times $U_{\rm eq}$ of the parent atoms. The H atoms of the free ketal group were rotated along the O–H bond to fit the electron density [O–H = 0.85 Å and $U_{\rm iso}({\rm H}) = 1.2U_{\rm eq}({\rm O})$] for the major component. Those belonging to the coordinated OH group were generated assuming sp^3 hybridization. The H atoms of the hydroxyl groups of the disordered lactate anions were similarly generated to fit the electron density.

Data collection: *CrystalClear* (Rigaku/MSC, 2002); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ORTEP*II (Johnson, 1976); software used to prepare material for publication: *SHELXL*97.

We thank the NSF of China, the FANEDD of China and the Education Foundation Office of Guangdong Province (z03065), as well as the University of Malaya, for generously supporting this work.

References

- Johnson, C. K. (1976). ORTEPII. Report ORNL-5139. Oak Ridge National Laboratory, Tennessee, USA.
- Rigaku/MSC (2002). CrystalClear. Version 1.35. Rigaku/MSC Inc., 9009 New Trails Drive, The Woodlands, TX 77381–5209, USA.
- Serna, Z. E., Lezama, L., Urtiaga, M. K., Arriortua, M. I., Barandika, M. G., Cortes, R. & Rojo, T. (2000). Angew. Chem. Int. Ed. 39, 344–346.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Tangoulis, V., Raptopoulou, C. P., Paschalidou, S., Bakalbassis, E. G., Perlepes, S. P. & Terzis, A. (1997). Angew. Chem. Int. Ed. Engl. 36, 1083–1085.
- Tong, M.-L., Lee, H. K., Tong, Y.-X., Chen, X.-M. & Mak, T. C. W. (2000). *Inorg. Chem.* 39, 4666–4669.
- Tong, M.-L., Zheng, S.-L., Shi, J.-X., Tong, Y.-X., Lee, H. K. & Chen X.-M. (2002). J. Chem. Soc. Dalton Trans. pp. 1727–1734.
- Wang, S.-L., Richardson, J. W., Briggs, S. J., Jacobson, R. A. & Jensen, W. P. (1986). Inorg. Chim. Acta, 111, 67–72.